Feather Vibration as a Stimulus for Sensing Incipient Separation in Falcon Diving Flight
نویسندگان
چکیده
Based on our preceding studies on the aerodynamics of a falcoperegrinus in diving flight along a vertical dam it is known that even when the body shape of the bird is rather streamlined in V-shape some feathers tips may elevate in certain regions of the body. These regions were identified in wind tunnel tests for typical diving flight conditions as regions of locally separated flow. A life-size model in V-shape of a falcoperegrinus with artificial feathers fixed along the body was studied in a wind tunnel to focus on the fluid-structure interaction of feathers located in this sector. The distal ends of the feathers show flow-induced vibrations at typical flight conditions which grow linear in amplitude with increasing angle of incidence until incipient separation. In light of the proven existence of vibration-sensitive mechanoreceptors in the follicles of secondary feathers in birds it is hypothesized that this linear amplitude response offers the bird to sense the angle of incidence during the diving flight using the vibration magnitude as sensory stimulus. Thus the bird in streamlined shape has still a good measure to control its attitude to be in the narrow window of safe angle of incidence. This might have implications also for other birds or technical applications of airfoil sensors regarding incipient separation detection.
منابع مشابه
Diving-Flight Aerodynamics of a Peregrine Falcon (Falco peregrinus)
This study investigates the aerodynamics of the falcon Falco peregrinus while diving. During a dive peregrines can reach velocities of more than 320 km h⁻¹. Unfortunately, in freely roaming falcons, these high velocities prohibit a precise determination of flight parameters such as velocity and acceleration as well as body shape and wing contour. Therefore, individual F. peregrinus were trained...
متن کاملA Computational Study on Avian Flapping Flight and the Influence of Feather Separation
Bird flight is an area of significant interest due to the utilization and control of unsteady aerodynamic effects via flapping. Although modern aerodynamics were originally inspired by bird flight, contemporary computational and experimental work associated with flapping flight focuses on insect flight. The purpose of the present paper is to improve the understanding of avian flight by investig...
متن کاملGliding flight: speed and acceleration of ideal falcons during diving and pull out.
Some falcons, such as peregrines (Falco peregrinus), attack their prey in the air at the end of high-speed dives and are thought to be the fastest of animals. Estimates of their top speed in a dive range up to 157 m s-1, although speeds this high have never been accurately measured. This study investigates the aerodynamic and gravitational forces on 'ideal falcons' and uses a mathematical model...
متن کاملFlight Performance and Feather Quality: Paying the Price of Overlapping Moult and Breeding in a Tropical Highland Bird
A temporal separation of energetically costly life history events like reproduction and maintenance of the integumentary system is thought to be promoted by selection to avoid trade-offs and maximize fitness. It has therefore remained somewhat of a paradox that certain vertebrate species can undergo both events simultaneously. Identifying potential costs of overlapping two demanding life histor...
متن کاملCurved flight paths and sideways vision in peregrine falcons (Falco peregrinus).
When diving at prey straight ahead from great distances at high speeds, a peregrine has a conflict between vision and aerodynamics: it must turn its head approximately 40 degrees to one side to see the prey with maximum visual acuity at the deep fovea of one eye, but the head in this position increases aerodynamic drag and slows the falcon down. The falcon could resolve this conflict by holding...
متن کامل